Links for 2010-01-10

  • “In sum, whether you are popular in middle and high school is largely out of your control, so it is unreasonable to aspire to become popular if you are not already popular. From my experience, the happiest teenagers are the ones who have accepted their status in the high school social hierarchy and made good friends with people of similar status.”
  • “We report successful manipulation of nonclassical atomic spin states. We apply an off-resonant noncircularly-polarized light pulse to a measurement-induced squeezed spin state of a cold atomic ensemble. By changing the pulse duration, we clearly observe a rotation of the anisotropic quantum-noise distribution in good contrast with the case of manipulation of a coherent spin state where the quantum-noise distribution is always isotropic. This is an important step for quantum state tomography, quantum swapping, and precision spectroscopic measurement.”
  • “We describe an experimental study of spin-projection noise in a high sensitivity alkali-metal magnetometer. We demonstrate a fourfold improvement in the measurement bandwidth of the magnetometer using continuous quantum nondemolition measurements. Operating in the scalar mode with a measurement volume of 2  cm3 we achieve magnetic field sensitivity of 22  fT/Hz1/2 and a bandwidth of 1.9 kHz with a spin polarization of only 1%. Our experimental arrangement is naturally backaction evading and can be used to realize sub-fT sensitivity with a highly polarized spin-squeezed atomic vapor.”
  • “We present the experimental observation of the antiblockade in an ultracold Rydberg gas recently proposed by Ates et al. [Phys. Rev. Lett. 98, 023002 (2007)]. Our approach allows the control of the pair distribution in the gas and is based on a strong coupling of one transition in an atomic three-level system, while introducing specific detunings of the other transition. When the coupling energy matches the interaction energy of the Rydberg long-range interactions, the otherwise blocked excitation of close pairs becomes possible. A time-resolved spectroscopic measurement of the Penning ionization signal is used to identify slight variations in the Rydberg pair distribution of a random arrangement of atoms. A model based on a pair interaction Hamiltonian is presented which well reproduces our experimental observations and allows one to deduce the distribution of nearest-neighbor distances.”
  • “We report the generation of entanglement between two individual 87Rb atoms in hyperfine ground states |F=1,M=1⟩ and |F=2,M=2⟩ which are held in two optical tweezers separated by 4  μm. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.”
  • “We present the first demonstration of a CNOT gate between two individually addressed neutral atoms. Our implementation of the CNOT uses Rydberg blockade interactions between neutral atoms held in optical traps separated by >8  μm. Using two different gate protocols we measure CNOT fidelities of F=0.73 and 0.72 based on truth table probabilities. The gate was used to generate Bell states with fidelity F=0.48±0.06. After correcting for atom loss we obtain an a posteriori entanglement fidelity of F=0.58.”