The Advent Calendar of Physics: Einstein’s Gravity

A week and a half ago, when the advent calendar reached Newton’s Law of Universal Gravitation, I said that it was the first equation we had seen that wasn’t completely correct. Having done our quick swing through quantum physics, the time has come to correct that equation: If you say “Einstein equation” to a random […]

The Advent Calendar of Physics: Schrödinger

Newton’s birthday (in the Julian calendar) is Sunday, so we’re in the final days of the advent calendar. Which means it’s time for the equations that are least like anything Newton did, such as today’s: This is the Schrödinger equation from non-relativistic quantum mechanics. If you want to determine the quantum state of an object […]

The Advent Calendar of Physics: Hydrogen

Today’s equation in our march to Newton’s birthday is actually a tiny bit out of order, historically speaking: This is the Rydberg formula for the wavelengths of the spectral lines in hydrogen (and hydrogen-like ions), with R a constant having the appropriate units, and the two n‘s being two dimensionless integers. This equation was developed […]

The Advent Calendar of Physics: Einstein’s Nobel

Yesterday’s equation was the first real result of quantum theory, Max Planck’s formula for the black-body spectrum. Planck never really liked the quantum basis of it, though, and preferred to think of it as just a calculational trick. It wasn’t until 1905 that anybody took the idea really seriously, leading to today’s equation: From the […]

The Advent Calendar of Physics: Science Works

Moving along in our countdown to Newton’s birthday, we come to 1900, and one of the most revolutionary moment in the history of physics, represented in today’s equation: This is Max Planck’s formula for the spectrum of the “black-body” radiation emitted by a hot object at temperature T. It’s also the equation highlighted on what […]

The Advent Calendar of Physics: Faraday

Moving along through our countdown to Newton’s birthday, we have an equation that combines two other titans of British science: This is the third of Maxwell’s equations (named after the great Scottish physicist James Clerk Maxwell), but it originates with Michael Faraday, one of the greatest experimentalists of the day. Faraday was a fascinating guy, […]